# Outline of Machine Learning & Statistical Methods

# **LEAPS** Methods Innovation Team

### **Case Study Background**

For the initial case study, develop a predictive model(s) that can improve decisionmaking for all stakeholders related to immune checkpoint inhibitor use in patients with advanced NSCLC.

#### Objectives

Assess feasibility of using federated (machine) learning methods, leveraging diverse data types (e.g., EHR, claims, social determinants of health, biologic, clinical trials, patient-generated, etc.) to:

- Identify signals, generate hypotheses about clinically meaningful subpopulations
- Define next step in corroborating/validating promising hypotheses
- Reduce bias in algorithm development through the use of diverse data sets
- Establish federated learning environment (technology enablers, crossfunctional expertise, governance) that is scalable

### Purpose of the Machine Learning & Statistical Methods Outline

- Discuss a list of machine learning and statistical methods that can be applied to a series of case studies within LEAPS
- Identify the right machine learning/statistical models to fit for the appropriate response variables with emphasis on full transparency
- Develop a framework for assessing and validating the statistical models

### **Application and Approach**

The Machine Learning (ML) & Statistical Methods Outline (Outline) seeks to identify and characterize the strengths and limitations of available machine learning and statistical methods to be applied to the Advanced NSCLC Use Case specifically and more generally to other use cases as identified by the LEAPS team. In addition to capturing general details, the strengths and limitations of the ML and statistical methods are characterized and assessed across multiple objective dimensions.



#### **Strengths & Limitations**

- Level of transparency of model or methods (low/high)
  - Significance: why an important dimension?
- Ease of interpretability by end user(s), e.g., clinicians
   Significance: why an important dimension?
- Flexibility to add in new/different models, in addition to the initial model selection(s), is important
  - Significance: why an important dimension?
- Performance boost over a meaningful benchmark
   Significance: why an important dimension?
- Retrospective vs. prospective interventional validation
  - Significance: why an important dimension?
- Potential algorithmic bias against key protected characteristics, including likely cause(s), and options for correcting the bias if possible
  - Significance: why an important dimension?

#### Other factors for consideration in model selection

- Balancing using statistically appropriate models with models that are accepted and useful to the end user(s), e.g., clinicians, payers, and other key decision-makers
  - Significance: why an important dimension?
- Recommendations from data partners on model preferences based on prior
   experience
  - Significance: why an important dimension?

## Appendix

|  | Table | 1: List of | f ML and | Statistical | models | under | consideration |
|--|-------|------------|----------|-------------|--------|-------|---------------|
|--|-------|------------|----------|-------------|--------|-------|---------------|

| Method/Model           | Description                                                                                                                                                                                                                                                | Unique<br>Feature(s)                                                                                                              | Strengths                                                    | Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logistic<br>Regression | The most common<br>statistical model to<br>understand the<br>relationship between a<br>binary response<br>variable and a list of<br>predictors. The model<br>assumes linear<br>additive relationship<br>between predictors<br>and the response<br>variable | Clear<br>interpretation of<br>relationship<br>between<br>response and<br>predictor<br>variables                                   | Easy to fit<br>Ease of<br>interpretability<br>by end user(s) | <ol> <li>Only for binary<br/>response variable<br/>can handle only<br/>small number of<br/>predictors.</li> <li>Linear additive<br/>assumption<br/>between<br/>predictors and<br/>response<br/>variables is not<br/>necessarily hold in<br/>reality</li> <li>Prediction<br/>performance is not<br/>as good as the<br/>other models can<br/>handle complex<br/>relationship<br/>between predictor<br/>and response<br/>variables</li> </ol> |
| Decision Tree          | A graph that applies a<br>series of binary<br>decision rules for the<br>predictors to predict<br>the response variables                                                                                                                                    | Model can be<br>interpreted as a<br>list of decision<br>rule                                                                      | Ease of<br>interpretability<br>by end user(s)                | <ol> <li>Can handle<br/>only small number<br/>of predictors</li> <li>Maybe too<br/>simple to handle<br/>complex<br/>relationship in<br/>reality</li> </ol>                                                                                                                                                                                                                                                                                 |
| Random forest          | A classification<br>algorithm consisting of<br>many decisions trees.<br>It uses bagging and<br>feature randomness<br>when building each<br>individual tree to try to                                                                                       | Random forests<br>generally<br>outperform<br>decision trees,<br>but their<br>accuracy is lower<br>than gradient<br>boosted trees. | Can handle<br>complex<br>relationship                        | <ol> <li>Need relatively<br/>large sample size</li> <li>Not easy to<br/>interpret the<br/>model</li> </ol>                                                                                                                                                                                                                                                                                                                                 |



| Method/Model                       | Description                                                                                                                                                                                                | Unique<br>Feature(s)                                              | Strengths                                                    | Limitations                                                                                                                                              |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | create an uncorrelated<br>forest of trees whose<br>prediction by<br>committee is more<br>accurate than that of<br>any individual tree.                                                                     |                                                                   |                                                              |                                                                                                                                                          |
| LASSO                              | Logistic regression<br>with implemented for<br>the                                                                                                                                                         | The lasso<br>procedure<br>encourages<br>simple, sparse<br>models. | Easy to fit<br>Ease of<br>interpretability<br>by end user(s) | <ol> <li>Can handle<br/>moderate number<br/>of predictors</li> <li>Maybe too<br/>simple to handle<br/>complex<br/>relationship in<br/>reality</li> </ol> |
| Neural<br>Network/Deep<br>Learning | Mimics the behavior of the brain                                                                                                                                                                           |                                                                   | Can handle very<br>complicated<br>relationship<br>between    | Difficult to training<br>the model, need<br>large sample size<br>Difficult to<br>interpret the<br>model                                                  |
| XGBoost                            | Implements Machine<br>Learning algorithms<br>under the Gradient<br>Boosting framework. It<br>provides a parallel tree<br>boosting to solve many<br>data science problems<br>in a fast and accurate<br>way. |                                                                   |                                                              | Overfitting<br>Difficulties in<br>model<br>interpretation                                                                                                |
|                                    |                                                                                                                                                                                                            |                                                                   |                                                              |                                                                                                                                                          |

